made by pyLODE 2.10.0

QUDT Schema - Version 2.1.12

Metadata

URI
http://qudt.org/2.1/schema/qudt
Version URI
http://qudt.org/2.1/schema/qudt
Imports
http://qudt.org/2.1/schema/extensions/imports
http://www.linkedmodel.org/schema/dtype
http://www.linkedmodel.org/schema/vaem
http://www.w3.org/2004/02/skos/core
Ontology RDF
RDF (turtle)

Table of Contents

  1. Classes
  2. Object Properties
  3. Functional Properties
  4. Datatype Properties
  5. Annotation Properties
  6. Properties
  7. Namespaces
  8. Legend

Overview

Pictures say 1,000 words
Figure 1: Ontology overview

Classes

Quantity Kind (abstract)c # Classes

URI http://qudt.org/schema/qudt/AbstractQuantityKind
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Conceptc
Restrictions skos:broader only qudt:QuantityKindc
qudt:symboldp min 0
qudt:latexSymboldp min 0
Sub-classes qudt:QuantityKindc
qudt:UserQuantityKindc

Aspect Classc # Classes

URI http://qudt.org/schema/qudt/AspectClass
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes rdfs:Classc
Members qudt:Aspect
qudt:Verifiable

Base Dimension Magnitudec # Classes

URI http://qudt.org/schema/qudt/BaseDimensionMagnitude
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A Dimension expresses a magnitude for a base quantiy kind such as mass, length and time.

DEPRECATED - each exponent is expressed as a property. Keep until a validaiton of this has been done.

Super-classes qudt:Conceptc
Restrictions qudt:hasBaseQuantityKindop only qudt:QuantityKindc
qudt:hasBaseQuantityKindop exactly 1
qudt:vectorMagnitudefp exactly 1
qudt:vectorMagnitudefp only xsd:floatc

Binary Prefixc # Classes

URI http://qudt.org/schema/qudt/BinaryPrefix
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A Binary Prefix is a prefix for multiples of units in data processing, data transmission, and digital information, notably the bit and the byte, to indicate multiplication by a power of 2.

Super-classes qudt:Prefixc

Bit Encodingc # Classes

URI http://qudt.org/schema/qudt/BitEncodingType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A bit encoding is a correspondence between the two possible values of a bit, 0 or 1, and some interpretation. For example, in a boolean encoding, a bit denotes a truth value, where 0 corresponds to False and 1 corresponds to True.

Super-classes qudt:Encodingc

Boolean encoding typec # Classes

URI http://qudt.org/schema/qudt/BooleanEncodingType
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Encodingc
Members qudt:OctetEncoding
qudt:BooleanEncoding
qudt:CharEncoding
qudt:ShortUnsignedIntegerEncoding

Byte Encodingc # Classes

URI http://qudt.org/schema/qudt/ByteEncodingType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This class contains the various ways that information may be encoded into bytes.

Super-classes qudt:Encodingc
Members qudt:OctetEncoding

Cardinality Typec # Classes

URI http://qudt.org/schema/qudt/CardinalityType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set (A = {2, 4, 6}) contains 3 elements, and therefore (A) has a cardinality of 3. There are two approaches to cardinality – one which compares sets directly using bijections and injections, and another which uses cardinal numbers.

Super-classes qudt:EnumeratedValuec
Members qudt:CT_UNCOUNTABLE
qudt:CT_COUNTABLY-INFINITE
qudt:CT_FINITE

Char Encoding Typec # Classes

URI http://qudt.org/schema/qudt/CharEncodingType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The class of all character encoding schemes, each of which defines a rule or algorithm for encoding character data as a sequence of bits or bytes.

Super-classes qudt:Encodingc
Members qudt:CharEncoding

Citationc # Classes

URI http://qudt.org/schema/qudt/Citation
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Provides a simple way of making citations.

Super-classes qudt:Conceptc
Restrictions qudt:descriptiondp exactly 1
qudt:urldp max 1

Commentc # Classes

URI http://qudt.org/schema/qudt/Comment
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes owl:Thingc
qudt:Verifiablec
Restrictions qudt:descriptiondp max 1
qudt:rationaledp min 0
dcterms:descriptionap max 1
Sub-classes qudt:NIST_SP811_Commentc

QUDT Conceptc # Classes

URI http://qudt.org/schema/qudt/Concept
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The root class for all QUDT concepts.

Super-classes owl:Thingc
Restrictions dcterms:descriptionap max 1
qudt:abbreviationdp max 1
qudt:plainTextDescriptiondp max 1
qudt:iddp max 1
qudt:hasRuleop only qudt:Rulec
qudt:descriptiondp max 1
Sub-classes qudt:Citationc
qudt:AbstractQuantityKindc
qudt:SystemOfUnitsc
qudt:Organizationc
qudt:SystemOfQuantityKindsc
qudt:MathFunctionTypec
qudt:Enumerationc
qudt:QuantityValuec
qudt:Encodingc
qudt:Rulec
qudt:Scalec
qudt:Symbolc
qudt:QuantityKindDimensionVectorc
qudt:Disciplinec
qudt:Quantityc
qudt:Figurec
qudt:Unitc
qudt:BaseDimensionMagnitudec
qudt:Datatypec
qudt:Prefixc
In domain of qudt:guidancedp
qudt:codedp
qudt:iddp
In range of prov:wasDerivedFrom

Constant valuec # Classes

URI http://qudt.org/schema/qudt/ConstantValue
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Used to specify the values of a constant.

Super-classes qudt:QuantityValuec
Restrictions qudt:exactConstantdp max 1

Counting Unitc # Classes

URI http://qudt.org/schema/qudt/CountingUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Used for all units that express counts. Examples are Atomic Number, Number, Number per Year, Percent and Sample per Second.

Super-classes qudt:DimensionlessUnitc

Currency Unitc # Classes

URI http://qudt.org/schema/qudt/CurrencyUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Used for all units that express currency.

Super-classes qudt:DimensionlessUnitc

Data Encodingc # Classes

URI http://qudt.org/schema/qudt/DataEncoding
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Data Encoding expresses the properties that specify how data is represented at the bit and byte level. These properties are applicable to describing raw data.

Super-classes qudt:Aspectc
Restrictions qudt:bitOrderop only qudt:EndianTypec
qudt:encodingop only qudt:Encodingc
qudt:bitOrderop max 1
qudt:byteOrderop max 1
qudt:encodingop max 1
In range of qudt:dataEncodingop

QUDT Datatypec # Classes

URI http://qudt.org/schema/qudt/Datatype
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A data type is a definition of a set of values (for example, "all integers between 0 and 10"), and the allowable operations on those values; the meaning of the data; and the way values of that type can be stored. Some types are primitive - built-in to the language, with no visible internal structure - e.g. Boolean; others are composite - constructed from one or more other types (of either kind) - e.g. lists, arrays, structures, unions. Object-oriented programming extends this with classes which encapsulate both the structure of a type and the operations that can be performed on it. Some languages provide strong typing, others allow implicit type conversion and/or explicit type conversion.

Super-classes qudt:Conceptc
Restrictions qudt:oleDBNamedp max 1
qudt:basis only qudt:Datatypec
qudt:jsNamedp max 1
qudt:cName max 1
qudt:matlabNamedp max 1
qudt:protocolBuffersName max 1
qudt:cardinality only qudt:CardinalityTypec
qudt:mySQLNamedp max 1
qudt:javaNamedp max 1
qudt:basis max 1
qudt:oracleSQLName max 1
qudt:bounded max 1
qudt:pythonName max 1
qudt:orderedType only qudt:OrderedTypec
qudt:iddp max 1
qudt:ansiSQLName max 1
qudt:vbName max 1
qudt:orderedType max 1
qudt:cardinality max 1
qudt:odbcNamedp max 1
qudt:microsoftSQLServerNamedp max 1
Sub-classes qudt:ScalarDatatypec
qudt:EnumeratedValuec
qudt:StructuredDatatypec

Date Time String Encoding Typec # Classes

URI http://qudt.org/schema/qudt/DateTimeStringEncodingType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Date Time encodings are logical encodings for expressing date/time quantities as strings by applying unambiguous formatting and parsing rules.

Super-classes qudt:StringEncodingTypec
Restrictions qudt:allowedPattern min 1
Members qudt:ISO8601-UTCDateTime-BasicFormat

Decimal Prefixc # Classes

URI http://qudt.org/schema/qudt/DecimalPrefix
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A Decimal Prefix is a prefix for multiples of units that are powers of 10.

Super-classes qudt:Prefixc

Derived Unitc # Classes

URI http://qudt.org/schema/qudt/DerivedUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A DerivedUnit is a type specification for units that are derived from other units.

Super-classes qudt:Unitc

Dimensionless Unitc # Classes

URI http://qudt.org/schema/qudt/DimensionlessUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A Dimensionless Unit is a quantity for which all the exponents of the factors corresponding to the base quantities in its quantity dimension are zero.

Super-classes qudt:Unitc
Sub-classes qudt:CountingUnitc
qudt:LogarithmicUnitc
qudt:CurrencyUnitc

Disciplinec # Classes

URI http://qudt.org/schema/qudt/Discipline
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Conceptc

Encodingc # Classes

URI http://qudt.org/schema/qudt/Encoding
Is Defined By http://qudt.org/2.1/schema/qudt
Description

An encoding is a rule or algorithm that is used to convert data from a native, or unspecified form into a specific form that satisfies the encoding rules. Examples of encodings include character encodings, such as UTF-8.

Super-classes qudt:Conceptc
Restrictions qudt:bits max 1
qudt:bytesdp max 1
Sub-classes qudt:BitEncodingTypec
qudt:CharEncodingTypec
qudt:BooleanEncodingTypec
qudt:IntegerEncodingTypec
qudt:StringEncodingTypec
qudt:FloatingPointEncodingTypec
qudt:ByteEncodingTypec

Endian Typec # Classes

URI http://qudt.org/schema/qudt/EndianType
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:EnumeratedValuec
In range of qudt:byteOrderop
qudt:bitOrderop
Members qudt:LittleEndian
qudt:BigEndian

Enumerated Valuec # Classes

URI http://qudt.org/schema/qudt/EnumeratedValue
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This class is for all enumerated and/or coded values. For example, it contains the dimension objects that are the basis elements in some abstract vector space associated with a quantity kind system. Another use is for the base dimensions for quantity systems. Each quantity kind system that defines a base set has a corresponding ordered enumeration whose elements are the dimension objects for the base quantity kinds. The order of the dimensions in the enumeration determines the canonical order of the basis elements in the corresponding abstract vector space.

An enumeration is a set of literals from which a single value is selected. Each literal can have a tag as an integer within a standard encoding appropriate to the range of integer values. Consistency of enumeration types will allow them, and the enumerated values, to be referred to unambiguously either through symbolic name or encoding. Enumerated values are also controlled vocabularies and as such need to be standardized. Without this consistency enumeration literals can be stated differently and result in data conflicts and misinterpretations.

The tags are a set of positive whole numbers, not necessarily contiguous and having no numerical significance, each corresponding to the associated literal identifier. An order attribute can also be given on the enumeration elements. An enumeration can itself be a member of an enumeration. This allows enumerations to be enumerated in a selection. Enumerations are also subclasses of Scalar Datatype. This allows them to be used as the reference of a datatype specification.

Super-classes qudt:Datatypec
dtype:EnumeratedValuec
Restrictions qudt:abbreviationdp max 1
qudt:descriptiondp max 1
qudt:symboldp max 1
Sub-classes qudt:QuantityTypec
qudt:SignednessTypec
qudt:ScaleTypec
qudt:EndianTypec
qudt:CardinalityTypec
qudt:OrderedTypec
qudt:RuleTypec

Enumerationc # Classes

URI http://qudt.org/schema/qudt/Enumeration
Is Defined By http://qudt.org/2.1/schema/qudt
Description

An enumeration is a set of literals from which a single value is selected. Each literal can have a tag as an integer within a standard encoding appropriate to the range of integer values. Consistency of enumeration types will allow them, and the enumerated values, to be referred to unambiguously either through symbolic name or encoding. Enumerated values are also controlled vocabularies and as such need to be standardized. Without this consistency enumeration literals can be stated differently and result in data conflicts and misinterpretations.

The tags are a set of positive whole numbers, not necessarily contiguous and having no numerical significance, each corresponding to the associated literal identifier. An order attribute can also be given on the enumeration elements. An enumeration can itself be a member of an enumeration. This allows enumerations to be enumerated in a selection. Enumerations are also subclasses of Scalar Datatype. This allows them to be used as the reference of a datatype specification.

Super-classes qudt:Conceptc
dtype:Enumerationc
Restrictions qudt:elementop only qudt:EnumeratedValuec
qudt:abbreviationdp max 1
qudt:elementop min 1
qudt:defaultop max 1
qudt:defaultop only qudt:EnumeratedValuec
In range of qudt:baseDimensionEnumerationop

Enumeration scalec # Classes

URI http://qudt.org/schema/qudt/EnumerationScale
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Scalec
dtype:Enumerationc

Figurec # Classes

URI http://qudt.org/schema/qudt/Figure
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Conceptc
Restrictions qudt:figureCaptiondp max 1
qudt:imageLocationdp exactly 1
qudt:imagedp max 1
qudt:heightdp max 1
qudt:widthdp max 1
qudt:figureLabeldp max 1
qudt:landscapedp max 1
In range of qudt:figureop

Floating Point Encodingc # Classes

URI http://qudt.org/schema/qudt/FloatingPointEncodingType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A "Encoding" with the following instance(s): "Double Precision Encoding", "Single Precision Real Encoding".

Super-classes qudt:Encodingc
Members qudt:SinglePrecisionRealEncoding
qudt:IEEE754_1985RealEncoding
qudt:DoublePrecisionEncoding

Integer Encodingc # Classes

URI http://qudt.org/schema/qudt/IntegerEncodingType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The encoding scheme for integer types

Super-classes qudt:Encodingc
Members qudt:LongUnsignedIntegerEncoding
qudt:ShortUnsignedIntegerEncoding
qudt:SignedIntegerEncoding
qudt:UnsignedIntegerEncoding
qudt:ShortSignedIntegerEncoding

Interval scalec # Classes

URI http://qudt.org/schema/qudt/IntervalScale
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The interval type allows for the degree of difference between items, but not the ratio between them. Examples include temperature with the Celsius scale, which has two defined points (the freezing and boiling point of water at specific conditions) and then separated into 100 intervals, date when measured from an arbitrary epoch (such as AD), percentage such as a percentage return on a stock,[16] location in Cartesian coordinates, and direction measured in degrees from true or magnetic north. Ratios are not meaningful since 20 °C cannot be said to be "twice as hot" as 10 °C, nor can multiplication/division be carried out between any two dates directly. However, ratios of differences can be expressed; for example, one difference can be twice another. Interval type variables are sometimes also called "scaled variables", but the formal mathematical term is an affine space (in this case an affine line).

Characteristics: median, percentile & Monotonic increasing (order (<) & totally ordered set

Super-classes qudt:Scalec

Logarithmic Unitc # Classes

URI http://qudt.org/schema/qudt/LogarithmicUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Logarithmic units are abstract mathematical units that can be used to express any quantities (physical or mathematical) that are defined on a logarithmic scale, that is, as being proportional to the value of a logarithm function. Examples of logarithmic units include common units of information and entropy, such as the bit, and the byte, as well as units of relative signal strength magnitude such as the decibel.

Super-classes qudt:DimensionlessUnitc

Math Function Typec # Classes

URI http://qudt.org/schema/qudt/MathFunctionType
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Conceptc

NIST SP~811 Commentc # Classes

URI http://qudt.org/schema/qudt/NIST_SP811_Comment
Is Defined By http://qudt.org/2.1/schema/qudt
Description

National Institute of Standards and Technology (NIST) Special Publication 811 Comments on some quantities and their units

Super-classes qudt:Commentc

Nominal scalec # Classes

URI http://qudt.org/schema/qudt/NominalScale
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A nominal scale differentiates between items or subjects based only on their names or (meta-)categories and other qualitative classifications they belong to; thus dichotomous data involves the construction of classifications as well as the classification of items. Discovery of an exception to a classification can be viewed as progress. Numbers may be used to represent the variables but the numbers do not have numerical value or relationship: For example, a Globally unique identifier. Examples of these classifications include gender, nationality, ethnicity, language, genre, style, biological species, and form. In a university one could also use hall of affiliation as an example.

Super-classes qudt:Scalec

Ordered typec # Classes

URI http://qudt.org/schema/qudt/OrderedType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Describes how a data or information structure is ordered.

Super-classes qudt:EnumeratedValuec
Members qudt:Unordered
qudt:TotallyOrdered
qudt:PartiallyOrdered

Ordinal scalec # Classes

URI http://qudt.org/schema/qudt/OrdinalScale
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The ordinal type allows for rank order (1st, 2nd, 3rd, etc.) by which data can be sorted, but still does not allow for relative degree of difference between them. Examples include, on one hand, dichotomous data with dichotomous (or dichotomized) values such as 'sick' vs. 'healthy' when measuring health, 'guilty' vs. 'innocent' when making judgments in courts, 'wrong/false' vs. 'right/true' when measuring truth value, and, on the other hand, non-dichotomous data consisting of a spectrum of values, such as 'completely agree', 'mostly agree', 'mostly disagree', 'completely disagree' when measuring opinion.

Super-classes qudt:Scalec
Restrictions qudt:orderdp exactly 1

Organizationc # Classes

URI http://qudt.org/schema/qudt/Organization
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Conceptc
Restrictions qudt:urldp min 0
Members qudt:Wikipedia

Physical Constantc # Classes

URI http://qudt.org/schema/qudt/PhysicalConstant
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A physical constant is a physical quantity that is generally believed to be both universal in nature and constant in time. It can be contrasted with a mathematical constant, which is a fixed numerical value but does not directly involve any physical measurement. There are many physical constants in science, some of the most widely recognized being the speed of light in vacuum c, Newton's gravitational constant G, Planck's constant h, the electric permittivity of free space ε0, and the elementary charge e. Physical constants can take many dimensional forms, or may be dimensionless depending on the system of quantities and units used.

Super-classes qudt:Quantityc
Restrictions qudt:latexSymboldp max 1
qudt:mathMLdefinitiondp max 1
qudt:latexDefinitiondp max 1

Prefixc # Classes

URI http://qudt.org/schema/qudt/Prefix
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Verifiablec
qudt:Conceptc
Restrictions qudt:prefixMultiplierfp max 1
qudt:ucumCodedp only qudt:UCUMcs-termc
qudt:latexSymboldp min 0
qudt:symboldp min 0
Sub-classes qudt:DecimalPrefixc
qudt:BinaryPrefixc
In range of qudt:prefixop

Quantifiablec # Classes

URI http://qudt.org/schema/qudt/Quantifiable
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Quantifiable ascribes to some thing the capability of being measured, observed, or counted.

Super-classes qudt:Aspectc
Restrictions qudt:dataTypeop max 1
qudt:standardUncertaintydp only xsd:doublec
qudt:dataEncodingop max 1
qudt:dataEncodingop only qudt:DataEncodingc
qudt:unitop max 1
qudt:valueop max 1
qudt:relativeStandardUncertaintydp max 1
qudt:dataTypeop only qudt:Datatypec
qudt:unitop only qudt:Unitc
qudt:standardUncertaintydp max 1
qudt:relativeStandardUncertaintydp only xsd:doublec
Sub-classes qudt:QuantityValuec
qudt:Quantityc

Quantityc # Classes

URI http://qudt.org/schema/qudt/Quantity
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A quantity is the measurement of an observable property of a particular object, event, or physical system. A quantity is always associated with the context of measurement (i.e. the thing measured, the measured value, the accuracy of measurement, etc.) whereas the underlying quantity kind is independent of any particular measurement. Thus, length is a quantity kind while the height of a rocket is a specific quantity of length; its magnitude that may be expressed in meters, feet, inches, etc. Examples of physical quantities include physical constants, such as the speed of light in a vacuum, Planck's constant, the electric permittivity of free space, and the fine structure constant.

In other words, quantities are quantifiable aspects of the world, such as the duration of a movie, the distance between two points, velocity of a car, the pressure of the atmosphere, and a person's weight; and units are used to describe their numerical measure.

Many quantity kinds are related to each other by various physical laws, and as a result, the associated units of some quantity kinds can be expressed as products (or ratios) of powers of other quantity kinds (e.g., momentum is mass times velocity and velocity is defined as distance divided by time). In this way, some quantities can be calculated from other measured quantities using their associations to the quantity kinds in these expressions. These quantity kind relationships are also discussed in dimensional analysis. Those that cannot be so expressed can be regarded as "fundamental" in this sense.

A quantity is distinguished from a "quantity kind" in that the former carries a value and the latter is a type specifier.

Super-classes qudt:Conceptc
qudt:Quantifiablec
Restrictions qudt:isDeltaQuantitydp only xsd:booleanc
qudt:hasQuantityKindop only qudt:QuantityKindc
qudt:hasQuantityKindop min 0
qudt:quantityValueop only qudt:QuantityValuec
Sub-classes qudt:PhysicalConstantc
In range of qudt:hasQuantityop

Quantity Kindc # Classes

URI http://qudt.org/schema/qudt/QuantityKind
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A Quantity Kind is any observable property that can be measured and quantified numerically. Familiar examples include physical properties such as length, mass, time, force, energy, power, electric charge, etc. Less familiar examples include currency, interest rate, price to earning ratio, and information capacity.

Super-classes qudt:AbstractQuantityKindc
qudt:Verifiablec
Restrictions qudt:dimensionVectorForSIop only qudt:QuantityKindDimensionVector_SIc
qudt:baseUSCustomaryUnitDimensionsdp max 1
qudt:applicableISOUnitop min 0
qudt:applicableImperialUnitop min 0
qudt:qkdvNumeratorop max 1 qudt:QuantityKindDimensionVectorc
qudt:baseCGSUnitDimensionsdp max 1
qudt:latexDefinitiondp max 1
qudt:baseUnitDimensionsdp max 4
qudt:qkdvDenominatorop max 1 qudt:QuantityKindDimensionVectorc
qudt:generalizationop max 1
qudt:generalizationop only qudt:QuantityKindc
qudt:dimensionVectorForSIop max 1
qudt:isQuantityKindOfop only qudt:SystemOfQuantityKindsc
qudt:baseISOUnitDimensionsdp max 1
qudt:applicableSIUnitop min 0
qudt:applicableCGSUnitop min 0
qudt:applicableUSCustomaryUnitop min 0
qudt:applicableUnitop min 0
qudt:mathMLdefinitiondp max 1
qudt:hasDimensionVectorop only qudt:QuantityKindDimensionVectorc
qudt:baseSIUnitDimensionsdp max 1
qudt:expressionap min 0
qudt:baseImperialUnitDimensionsdp max 1
In domain of qudt:belongsToSystemOfQuantitiesop
In range of qudt:hasQuantityKindop
qudt:relevantQuantityKindop

Quantity Kind Dimension Vectorc # Classes

URI http://qudt.org/schema/qudt/QuantityKindDimensionVector
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A Quantity Kind Dimension Vector describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass (\(M\)), length (\(L\)), time (\(T\)) current (\(I\)), amount of substance (\(N\)), luminous intensity (\(J\)) and absolute temperature (\(\theta\)) as \(dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}\).

The rational powers of the dimensional exponents, \(\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu\), are positive, negative, or zero.

For example, the dimension of the physical quantity kind \(\it{speed}\) is \(\boxed{length/time}\), \(L/T\) or \(LT^{-1}\), and the dimension of the physical quantity kind force is \(\boxed{mass \times acceleration}\) or \(\boxed{mass \times (length/time)/time}\), \(ML/T^2\) or \(MLT^{-2}\) respectively.

Super-classes qudt:Conceptc
Restrictions qudt:dimensionlessExponentdp exactly 1
qudt:dimensionExponentForMassdp exactly 1
qudt:dimensionExponentForLuminousIntensitydp exactly 1
qudt:dimensionExponentForLengthdp exactly 1
qudt:dimensionExponentForThermodynamicTemperaturedp exactly 1
qudt:dimensionExponentForAmountOfSubstancedp exactly 1
qudt:latexDefinitiondp max 1
qudt:dimensionExponentForTimedp exactly 1
qudt:baseUnitDimensionsdp max 1
qudt:dimensionExponentForElectricCurrentdp exactly 1
Sub-classes qudt:QuantityKindDimensionVector_SIc
qudt:QuantityKindDimensionVector_Imperialc
qudt:QuantityKindDimensionVector_ISOc
qudt:QuantityKindDimensionVector_CGSc
In range of qudt:denominatorDimensionVectorop
qudt:qkdvNumeratorop
qudt:numeratorDimensionVectorop
qudt:hasDimensionVectorop
qudt:qkdvDenominatorop

CGS Dimension vectorc # Classes

URI http://qudt.org/schema/qudt/QuantityKindDimensionVector_CGS
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A CGS Dimension Vector is used to specify the dimensions for a C.G.S. quantity kind.

Super-classes qudt:QuantityKindDimensionVectorc
Sub-classes qudt:QuantityKindDimensionVector_CGS-EMUc
qudt:QuantityKindDimensionVector_CGS-LHc
qudt:QuantityKindDimensionVector_CGS-ESUc
qudt:QuantityKindDimensionVector_CGS-GAUSSc

CGS EMU Dimension vectorc # Classes

URI http://qudt.org/schema/qudt/QuantityKindDimensionVector_CGS-EMU
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A CGS EMU Dimension Vector is used to specify the dimensions for EMU C.G.S. quantity kind.

Super-classes qudt:QuantityKindDimensionVector_CGSc

CGS ESU Dimension vectorc # Classes

URI http://qudt.org/schema/qudt/QuantityKindDimensionVector_CGS-ESU
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A CGS ESU Dimension Vector is used to specify the dimensions for ESU C.G.S. quantity kind.

Super-classes qudt:QuantityKindDimensionVector_CGSc

CGS GAUSS Dimension vectorc # Classes

URI http://qudt.org/schema/qudt/QuantityKindDimensionVector_CGS-GAUSS
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A CGS GAUSS Dimension Vector is used to specify the dimensions for Gaussioan C.G.S. quantity kind.

Super-classes qudt:QuantityKindDimensionVector_CGSc

CGS LH Dimension vectorc # Classes

URI http://qudt.org/schema/qudt/QuantityKindDimensionVector_CGS-LH
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A CGS LH Dimension Vector is used to specify the dimensions for Lorentz-Heaviside C.G.S. quantity kind.

Super-classes qudt:QuantityKindDimensionVector_CGSc

ISO Dimension vectorc # Classes

URI http://qudt.org/schema/qudt/QuantityKindDimensionVector_ISO
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:QuantityKindDimensionVectorc

Imperial dimension vectorc # Classes

URI http://qudt.org/schema/qudt/QuantityKindDimensionVector_Imperial
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:QuantityKindDimensionVectorc

Quantity Kind Dimension vector (SI)c # Classes

URI http://qudt.org/schema/qudt/QuantityKindDimensionVector_SI
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:QuantityKindDimensionVectorc
In range of qudt:dimensionVectorForSIop

Quantity typec # Classes

URI http://qudt.org/schema/qudt/QuantityType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

(\textit{Quantity Type}) is an enumeration of quanity kinds. It specializes (\boxed{dtype:EnumeratedValue}) by constrinaing (\boxed{dtype:value}) to instances of (\boxed{qudt:QuantityKind}).

Super-classes qudt:EnumeratedValuec
Restrictions dtype:value only qudt:QuantityKindc

Quantity valuec # Classes

URI http://qudt.org/schema/qudt/QuantityValue
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A Quantity Value expresses the magnitude and kind of a quantity and is given by the product of a numerical value n and a unit of measure U. The number multiplying the unit is referred to as the numerical value of the quantity expressed in that unit. Refer to NIST SP 811 section 7 for more on quantity values.

Super-classes qudt:Conceptc
qudt:Quantifiablec
Restrictions qudt:unitop exactly 1
Sub-classes qudt:ConstantValuec
In range of qudt:quantityValueop

Ratio scalec # Classes

URI http://qudt.org/schema/qudt/RatioScale
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The ratio type takes its name from the fact that measurement is the estimation of the ratio between a magnitude of a continuous quantity and a unit magnitude of the same kind (Michell, 1997, 1999). A ratio scale possesses a meaningful (unique and non-arbitrary) zero value. Most measurement in the physical sciences and engineering is done on ratio scales. Examples include mass, length, duration, plane angle, energy and electric charge. In contrast to interval scales, ratios are now meaningful because having a non-arbitrary zero point makes it meaningful to say, for example, that one object has "twice the length" of another (= is "twice as long"). Very informally, many ratio scales can be described as specifying "how much" of something (i.e. an amount or magnitude) or "how many" (a count). The Kelvin temperature scale is a ratio scale because it has a unique, non-arbitrary zero point called absolute zero.

Super-classes qudt:Scalec

Rulec # Classes

URI http://qudt.org/schema/qudt/Rule
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Conceptc
qudt:Verifiablec
Restrictions qudt:exampleap min 0
qudt:ruleTypeop only qudt:RuleTypec
qudt:rationaledp min 0

Rule Typec # Classes

URI http://qudt.org/schema/qudt/RuleType
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:EnumeratedValuec

Scalar Datatypec # Classes

URI http://qudt.org/schema/qudt/ScalarDatatype
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Scalar data types are those that have a single value. The permissible values are defined over a domain that may be integers, float, character or boolean. Often a scalar data type is referred to as a primitive data type.

Super-classes qudt:Datatypec
Restrictions qudt:bits max 1
qudt:maxExclusivedp max 1
qudt:minInclusivedp max 1
qudt:maxInclusivedp max 1
qudt:rdfsDatatype max 1
qudt:rdfsDatatype only rdfs:Datatypec
qudt:bytesdp max 1
qudt:minExclusivedp max 1
qudt:length max 1

Scalec # Classes

URI http://qudt.org/schema/qudt/Scale
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Scales (also called "scales of measurement" or "levels of measurement") are expressions that typically refer to the theory of scale types.

Super-classes qudt:Conceptc
Restrictions qudt:scaleTypeop only qudt:ScaleTypec
qudt:permissibleTransformationop only qudt:TransformTypec
qudt:dataStructuredp max 1
qudt:permissibleMathsop only qudt:MathsFunctionTypec
qudt:scaleTypeop max 1
Sub-classes qudt:OrdinalScalec
qudt:IntervalScalec
qudt:RatioScalec
qudt:EnumerationScalec
qudt:NominalScalec

Scale typec # Classes

URI http://qudt.org/schema/qudt/ScaleType
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:EnumeratedValuec
Restrictions qudt:dataStructuredp max 1
qudt:permissibleTransformationop only qudt:TransformTypec
qudt:permissibleMathsop only qudt:MathsFunctionTypec

Signedness typec # Classes

URI http://qudt.org/schema/qudt/SignednessType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Specifics whether a value should be signed or unsigned.

Super-classes qudt:EnumeratedValuec
Members qudt:SIGNED
qudt:UNSIGNED

Statementc # Classes

URI http://qudt.org/schema/qudt/Statement
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes rdf:Statementc

String Encoding Typec # Classes

URI http://qudt.org/schema/qudt/StringEncodingType
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A "Encoding" with the following instance(s): "UTF-16 String", "UTF-8 Encoding".

Super-classes qudt:Encodingc
Sub-classes qudt:DateTimeStringEncodingTypec
Members qudt:UTF8-StringEncoding
qudt:UTF16-StringEncoding

Structured Data Typec # Classes

URI http://qudt.org/schema/qudt/StructuredDatatype
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A "Structured Datatype", in contrast to scalar data types, is used to characterize classes of more complex data structures, such as linked or indexed lists, trees, ordered trees, and multi-dimensional file formats.

Super-classes qudt:Datatypec
Restrictions qudt:elementType max 1

Symbolc # Classes

URI http://qudt.org/schema/qudt/Symbol
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:Conceptc

System of Quantity Kindsc # Classes

URI http://qudt.org/schema/qudt/SystemOfQuantityKinds
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A system of quantity kinds is a set of one or more quantity kinds together with a set of zero or more algebraic equations that define relationships between quantity kinds in the set. In the physical sciences, the equations relating quantity kinds are typically physical laws and definitional relations, and constants of proportionality. Examples include Newton’s First Law of Motion, Coulomb’s Law, and the definition of velocity as the instantaneous change in position. In almost all cases, the system identifies a subset of base quantity kinds. The base set is chosen so that all other quantity kinds of interest can be derived from the base quantity kinds and the algebraic equations. If the unit system is explicitly associated with a quantity kind system, then the unit system must define at least one unit for each quantity kind. From a scientific point of view, the division of quantities into base quantities and derived quantities is a matter of convention.

Super-classes qudt:Conceptc
Restrictions qudt:baseDimensionEnumerationop max 1
qudt:hasQuantityKindop only qudt:QuantityKindc
qudt:hasUnitSystemop only qudt:SystemOfUnitsc
qudt:baseDimensionEnumerationop only qudt:Enumerationc
qudt:hasQuantityKindop min 0
In range of qudt:belongsToSystemOfQuantitiesop

System of Unitsc # Classes

URI http://qudt.org/schema/qudt/SystemOfUnits
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A system of units is a set of units which are chosen as the reference scales for some set of quantity kinds together with the definitions of each unit. Units may be defined by experimental observation or by proportion to another unit not included in the system. If the unit system is explicitly associated with a quantity kind system, then the unit system must define at least one unit for each quantity kind.

Super-classes qudt:Conceptc
Restrictions qudt:hasDefinedUnitop only qudt:Unitc
qudt:hasBaseUnitop only qudt:Unitc
qudt:hasDerivedUnitop only qudt:Unitc
qudt:applicablePhysicalConstantop only qudt:PhysicalConstantc
qudt:hasAllowedUnitop only qudt:Unitc
qudt:hasDerivedCoherentUnitop only qudt:Unitc
qudt:hasCoherentUnitop only qudt:Unitc
qudt:hasUnitop only qudt:Unitc
In range of qudt:unitOfSystemop
qudt:coherentUnitOfSystemop
qudt:derivedNonCoherentUnitOfSystemop

Unitc # Classes

URI http://qudt.org/schema/qudt/Unit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A unit of measure, or unit, is a particular quantity value that has been chosen as a scale for measuring other quantities the same kind (more generally of equivalent dimension). For example, the meter is a quantity of length that has been rigorously defined and standardized by the BIPM (International Board of Weights and Measures). Any measurement of the length can be expressed as a number multiplied by the unit meter. More formally, the value of a physical quantity Q with respect to a unit (U) is expressed as the scalar multiple of a real number (n) and U, as (Q = nU).

Super-classes qudt:Verifiablec
qudt:Conceptc
Restrictions qudt:conversionOffsetfp max 1
qudt:hasQuantityKindop only qudt:QuantityKindc
qudt:latexDefinitiondp min 0
qudt:mathMLdefinitiondp max 1
qudt:hasDimensionVectorop max 1
qudt:numeratorDimensionVectorop max 1
qudt:denominatorDimensionVectorop only qudt:QuantityKindDimensionVectorc
qudt:symboldp min 0
qudt:numeratorDimensionVectorop only qudt:QuantityKindDimensionVectorc
qudt:denominatorDimensionVectorop max 1
qudt:latexSymboldp min 0
qudt:hasDimensionVectorop only qudt:QuantityKindDimensionVectorc
qudt:abbreviationdp max 1
qudt:conversionMultiplierfp max 1
qudt:unitOfSystemop only qudt:SystemOfUnitsc
qudt:siUnitsExpressiondp min 0
qudt:iec61360Codedp only xsd:stringc
qudt:expressionap min 0
qudt:ucumCodedp only qudt:UCUMcsc
Sub-classes qudt:DimensionlessUnitc
qudt:DerivedUnitc
In domain of qudt:unitOfSystemop
qudt:omUnitop
In range of qudt:applicableImperialUnitop
qudt:exactMatchop
qudt:applicableISOUnitop
qudt:applicablePlanckUnitop
qudt:applicableCGSUnitop
qudt:applicableSIUnitop
qudt:relevantUnitop
qudt:unitop
qudt:applicableUnitop
qudt:applicableUSCustomaryUnitop

User Quantity Kindc # Classes

URI http://qudt.org/schema/qudt/UserQuantityKind
Is Defined By http://qudt.org/2.1/schema/qudt
Super-classes qudt:AbstractQuantityKindc
Restrictions qudt:hasQuantityKindop only qudt:QuantityKindc
qudt:hasQuantityKindop exactly 1

Object Properties

is replaced byop # OPs

URI http://purl.org/dc/terms/isReplacedBy

allowed unit of systemop # OPs

URI http://qudt.org/schema/qudt/allowedUnitOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a unit of measure with a unit system that does not define the unit, but allows its use within the system. An allowed unit must be convertible to some dimensionally eqiuvalent unit that is defined by the system.

Super-properties qudt:unitOfSystemop
Inverse properties qudt:hasAllowedUnitop

applicable CGS unitop # OPs

URI http://qudt.org/schema/qudt/applicableCGSUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:applicableUnitop
Range(s) qudt:Unitc

applicable ISO unitop # OPs

URI http://qudt.org/schema/qudt/applicableISOUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:applicableUnitop
Range(s) qudt:Unitc

applicable Imperial unitop # OPs

URI http://qudt.org/schema/qudt/applicableImperialUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:applicableUnitop
Range(s) qudt:Unitc

applicable physical constantop # OPs

URI http://qudt.org/schema/qudt/applicablePhysicalConstant
Is Defined By http://qudt.org/2.1/schema/qudt

applicable Planck unitop # OPs

URI http://qudt.org/schema/qudt/applicablePlanckUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:applicableUnitop
Range(s) qudt:Unitc

applicable SI unitop # OPs

URI http://qudt.org/schema/qudt/applicableSIUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:applicableUnitop
Range(s) qudt:Unitc

applicable US Customary unitop # OPs

URI http://qudt.org/schema/qudt/applicableUSCustomaryUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:applicableUnitop
Range(s) qudt:Unitc

applicable unitop # OPs

URI http://qudt.org/schema/qudt/applicableUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:Unitc

base dimension enumerationop # OPs

URI http://qudt.org/schema/qudt/baseDimensionEnumeration
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property associates a system of quantities with an enumeration that enumerates the base dimensions of the system in canonical order.

Range(s) qudt:Enumerationc

is base unit of systemop # OPs

URI http://qudt.org/schema/qudt/baseUnitOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a unit of measure to the system of units in which it is defined as a base unit for the system. The base units of a system are used to define the derived units of the system by expressing the derived units as products of the base units raised to a rational power.

Super-properties qudt:coherentUnitOfSystemop
Inverse properties qudt:hasBaseUnitop

belongs to system of quantitiesop # OPs

URI http://qudt.org/schema/qudt/belongsToSystemOfQuantities
Is Defined By http://qudt.org/2.1/schema/qudt
Domain(s) qudt:QuantityKindc
Range(s) qudt:SystemOfQuantityKindsc

bit orderop # OPs

URI http://qudt.org/schema/qudt/bitOrder
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:EndianTypec

byte orderop # OPs

URI http://qudt.org/schema/qudt/byteOrder
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Byte order is an enumeration of two values: 'Big Endian' and 'Little Endian' and is used to denote whether the most signiticant byte is either first or last, respectively.

Range(s) qudt:EndianTypec

categorized asop # OPs

URI http://qudt.org/schema/qudt/categorizedAs
Is Defined By http://qudt.org/2.1/schema/qudt

is coherent unit of systemop # OPs

URI http://qudt.org/schema/qudt/coherentUnitOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A coherent unit of measurement for a unit system is a defined unit that may be expressed as a product of powers of the system's base units with the proportionality factor of one. A system of units is coherent with respect to a system of quantities and equations if the system of units is chosen in such a way that the equations between numerical values have exactly the same form (including the numerical factors) as the corresponding equations between the quantities. For example, the 'newton' and the 'joule'. These two are, respectively, the force that causes one kilogram to be accelerated at 1 metre per second per second, and the work done by 1 newton acting over 1 metre. Being coherent refers to this consistent use of 1. In the old c.g.s. system , with its base units the centimetre and the gram, the corresponding coherent units were the dyne and the erg, respectively the force that causes 1 gram to be accelerated at 1 centimetre per second per second, and the work done by 1 dyne acting over 1 centimetre. So (1 newton = 10^5\,dyne), (1 joule = 10^7\,erg), making each of the four compatible in a decimal sense within its respective other system, but not coherent therein.

Super-properties qudt:definedUnitOfSystemop
Inverse properties qudt:hasCoherentUnitop
Range(s) qudt:SystemOfUnitsc

coherent unit systemop # OPs

URI http://qudt.org/schema/qudt/coherentUnitSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A system of units is coherent with respect to a system of quantities and equations if the system of units is chosen in such a way that the equations between numerical values have exactly the same form (including the numerical factors) as the corresponding equations between the quantities. In such a coherent system, no numerical factor other than the number 1 ever occurs in the expressions for the derived units in terms of the base units. For example, the \(newton\) and the \(joule\). These two are, respectively, the force that causes one kilogram to be accelerated at 1 metre per (1) second per (1) second, and the work done by 1 newton acting over 1 metre. Being coherent refers to this consistent use of 1. In the old c.g.s. system , with its base units the centimetre and the gram, the corresponding coherent units were the dyne and the erg, respectively the force that causes 1 gram to be accelerated at 1 centimetre per (1) second per (1) second, and the work done by 1 dyne acting over 1 centimetre. So \(1\,newton = 10^5 dyne\), \(1 joule = 10^7 erg\), making each of the four compatible in a decimal sense within its respective other system, but not coherent therein.

Super-properties qudt:hasUnitSystemop

data encodingop # OPs

URI http://qudt.org/schema/qudt/dataEncoding
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:DataEncodingc

datatypeop # OPs

URI http://qudt.org/schema/qudt/dataType
Is Defined By http://qudt.org/2.1/schema/qudt

defaultop # OPs

URI http://qudt.org/schema/qudt/default
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The default element in an enumeration

defined unit of systemop # OPs

URI http://qudt.org/schema/qudt/definedUnitOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a unit of measure with the unit system that defines the unit.

Super-properties qudt:unitOfSystemop
Inverse properties qudt:hasDefinedUnitop

denominator dimension vectorop # OPs

URI http://qudt.org/schema/qudt/denominatorDimensionVector
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:QuantityKindDimensionVectorc

is coherent derived unit of systemop # OPs

URI http://qudt.org/schema/qudt/derivedCoherentUnitOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a unit of measure to the unit system in which the unit is derived from the system's base units with a proportionality constant of one.

Super-properties qudt:coherentUnitOfSystemop qudt:derivedUnitOfSystemop
Inverse properties qudt:hasDerivedCoherentUnitop

is non-coherent derived unit of systemop # OPs

URI http://qudt.org/schema/qudt/derivedNonCoherentUnitOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a unit of measure to the unit system in which the unit is derived from the system's base units without proportionality constant of one.

Super-properties qudt:derivedUnitOfSystemop
Inverse properties qudt:hasDerivedNonCoherentUnitop
Range(s) qudt:SystemOfUnitsc

derived quantity kind of systemop # OPs

URI http://qudt.org/schema/qudt/derivedQuantityKindOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:isQuantityKindOfop
Inverse properties qudt:systemDerivedQuantityKindop

is derived unit of systemop # OPs

URI http://qudt.org/schema/qudt/derivedUnitOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a unit of measure to the system of units in which it is defined as a derived unit. That is, the derived unit is defined as a product of the base units for the system raised to some rational power.

Super-properties qudt:unitOfSystemop
Inverse properties qudt:hasDerivedUnitop

dimension inverseop # OPs

URI http://qudt.org/schema/qudt/dimensionInverse
Is Defined By http://qudt.org/2.1/schema/qudt
Inverse properties qudt:dimensionInverseop

dimension vector for SIop # OPs

URI http://qudt.org/schema/qudt/dimensionVectorForSI
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:QuantityKindDimensionVector_SIc

elementop # OPs

URI http://qudt.org/schema/qudt/element
Is Defined By http://qudt.org/2.1/schema/qudt
Description

An element of an enumeration

element kindop # OPs

URI http://qudt.org/schema/qudt/elementKind
Is Defined By http://qudt.org/2.1/schema/qudt

encodingop # OPs

URI http://qudt.org/schema/qudt/encoding
Is Defined By http://qudt.org/2.1/schema/qudt

exact matchop # OPs

URI http://qudt.org/schema/qudt/exactMatch
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:Unitc

figureop # OPs

URI http://qudt.org/schema/qudt/figure
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Provides a link to an image.

Range(s) qudt:Figurec

generalizationop # OPs

URI http://qudt.org/schema/qudt/generalization
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a quantity kind to its generalization. A quantity kind, PARENT, is a generalization of the quantity kind CHILD only if:

  1. PARENT and CHILD have the same dimensions in every system of quantities;
  2. Every unit that is a measure of quantities of kind CHILD is also a valid measure of quantities of kind PARENT.
Inverse properties qudt:specializationop

allowed unitop # OPs

URI http://qudt.org/schema/qudt/hasAllowedUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a unit system with a unit of measure that is not defined by or part of the system, but is allowed for use within the system. An allowed unit must be convertible to some dimensionally eqiuvalent unit that is defined by the system.

Super-properties qudt:hasUnitop

has base quantity kindop # OPs

URI http://qudt.org/schema/qudt/hasBaseQuantityKind
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:hasQuantityKindop
Inverse properties qudt:isBaseQuantityKindOfSystemop

base unitop # OPs

URI http://qudt.org/schema/qudt/hasBaseUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a system of units to a base unit defined within the system. The base units of a system are used to define the derived units of the system by expressing the derived units as products of the base units raised to a rational power.

Super-properties qudt:hasCoherentUnitop
Inverse properties qudt:baseUnitOfSystemop

coherent unitop # OPs

URI http://qudt.org/schema/qudt/hasCoherentUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A coherent unit of measurement for a unit system is a defined unit that may be expressed as a product of powers of the system's base units with the proportionality factor of one.

Super-properties qudt:hasDefinedUnitop
Inverse properties qudt:coherentUnitOfSystemop

defined unitop # OPs

URI http://qudt.org/schema/qudt/hasDefinedUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a unit system with a unit of measure that is defined by the system.

Super-properties qudt:hasUnitop

has quantity kind dimension vector denominator partop # OPs

URI http://qudt.org/schema/qudt/hasDenominatorPart
Is Defined By http://qudt.org/2.1/schema/qudt

derived coherent unitop # OPs

URI http://qudt.org/schema/qudt/hasDerivedCoherentUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:hasDerivedUnitop qudt:hasCoherentUnitop
Inverse properties qudt:derivedCoherentUnitOfSystemop

has coherent derived unitop # OPs

URI http://qudt.org/schema/qudt/hasDerivedNonCoherentUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:hasDerivedUnitop
Inverse properties qudt:derivedNonCoherentUnitOfSystemop

derived unitop # OPs

URI http://qudt.org/schema/qudt/hasDerivedUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a system of units to a unit of measure that is defined within the system in terms of the base units for the system. That is, the derived unit is defined as a product of the base units for the system raised to some rational power.

Inverse properties qudt:derivedUnitOfSystemop

has dimensionop # OPs

URI http://qudt.org/schema/qudt/hasDimension
Is Defined By http://qudt.org/2.1/schema/qudt

dimension expressionop # OPs

URI http://qudt.org/schema/qudt/hasDimensionExpression
Is Defined By http://qudt.org/2.1/schema/qudt

has dimension vectorop # OPs

URI http://qudt.org/schema/qudt/hasDimensionVector
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:QuantityKindDimensionVectorc

has non-coherent unitop # OPs

URI http://qudt.org/schema/qudt/hasNonCoherentUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A coherent unit of measurement for a unit system is a defined unit that may be expressed as a product of powers of the system's base units with the proportionality factor of one.

Super-properties qudt:hasDefinedUnitop
Inverse properties qudt:coherentUnitOfSystemop

has quantity kind dimension vector numerator partop # OPs

URI http://qudt.org/schema/qudt/hasNumeratorPart
Is Defined By http://qudt.org/2.1/schema/qudt

prefix unitop # OPs

URI http://qudt.org/schema/qudt/hasPrefixUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:hasDefinedUnitop

has quantityop # OPs

URI http://qudt.org/schema/qudt/hasQuantity
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:Quantityc

has quantity kindop # OPs

URI http://qudt.org/schema/qudt/hasQuantityKind
Is Defined By http://qudt.org/2.1/schema/qudt
Inverse properties qudt:isQuantityKindOfop
Range(s) qudt:QuantityKindc

has reference quantity kindop # OPs

URI http://qudt.org/schema/qudt/hasReferenceQuantityKind
Is Defined By http://qudt.org/2.1/schema/qudt

has ruleop # OPs

URI http://qudt.org/schema/qudt/hasRule
Is Defined By http://qudt.org/2.1/schema/qudt

has unitop # OPs

URI http://qudt.org/schema/qudt/hasUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a system of units with a unit of measure that is either a) defined by the system, or b) accepted for use by the system and is convertible to a unit of equivalent dimension that is defined by the system. Systems of units may distinguish between base and derived units. Base units are the units which measure the base quantities for the corresponding system of quantities. The base units are used to define units for all other quantities as products of powers of the base units. Such units are called derived units for the system.

Inverse properties qudt:unitOfSystemop

has unit systemop # OPs

URI http://qudt.org/schema/qudt/hasUnitSystem
Is Defined By http://qudt.org/2.1/schema/qudt

has vocabularyop # OPs

URI http://qudt.org/schema/qudt/hasVocabulary
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) owl:Ontologyc

is base quantity kind of systemop # OPs

URI http://qudt.org/schema/qudt/isBaseQuantityKindOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:isQuantityKindOfop
Inverse properties qudt:hasBaseQuantityKindop

is dimension in systemop # OPs

URI http://qudt.org/schema/qudt/isDimensionInSystem
Is Defined By http://qudt.org/2.1/schema/qudt

is quantity kind ofop # OPs

URI http://qudt.org/schema/qudt/isQuantityKindOf
Is Defined By http://qudt.org/2.1/schema/qudt
Inverse properties qudt:hasQuantityKindop

is scaling ofop # OPs

URI http://qudt.org/schema/qudt/isScalingOf
Is Defined By http://qudt.org/2.1/schema/qudt

numerator dimension vectorop # OPs

URI http://qudt.org/schema/qudt/numeratorDimensionVector
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:QuantityKindDimensionVectorc

om unitop # OPs

URI http://qudt.org/schema/qudt/omUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Domain(s) qudt:Unitc

permissible mathsop # OPs

URI http://qudt.org/schema/qudt/permissibleMaths
Is Defined By http://qudt.org/2.1/schema/qudt

permissible transformationop # OPs

URI http://qudt.org/schema/qudt/permissibleTransformation
Is Defined By http://qudt.org/2.1/schema/qudt

prefixop # OPs

URI http://qudt.org/schema/qudt/prefix
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Associates a unit with the appropriate prefix, if any.

Range(s) qudt:Prefixc

denominator dimension vectorop # OPs

URI http://qudt.org/schema/qudt/qkdvDenominator
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:QuantityKindDimensionVectorc

numerator dimension vectorop # OPs

URI http://qudt.org/schema/qudt/qkdvNumerator
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:QuantityKindDimensionVectorc

quantityop # OPs

URI http://qudt.org/schema/qudt/quantity
Is Defined By http://qudt.org/2.1/schema/qudt
Description

a property to relate an observable thing with a quantity (qud:Quantity)

quantity valueop # OPs

URI http://qudt.org/schema/qudt/quantityValue
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:QuantityValuec

referenceop # OPs

URI http://qudt.org/schema/qudt/reference
Is Defined By http://qudt.org/2.1/schema/qudt

reference unitop # OPs

URI http://qudt.org/schema/qudt/referenceUnit
Is Defined By http://qudt.org/2.1/schema/qudt

relevant quantity kindop # OPs

URI http://qudt.org/schema/qudt/relevantQuantityKind
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:QuantityKindc

Relevant Unitop # OPs

URI http://qudt.org/schema/qudt/relevantUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property is used for qudt:Discipline instances to identify the Unit instances that are used within a given discipline.

Range(s) qudt:Unitc

rule typeop # OPs

URI http://qudt.org/schema/qudt/ruleType
Is Defined By http://qudt.org/2.1/schema/qudt

scale typeop # OPs

URI http://qudt.org/schema/qudt/scaleType
Is Defined By http://qudt.org/2.1/schema/qudt

specializationop # OPs

URI http://qudt.org/schema/qudt/specialization
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a quantity kind to its specialization(s). For example, linear velocity and angular velocity are both specializations of velocity.

Inverse properties qudt:generalizationop

system definitionop # OPs

URI http://qudt.org/schema/qudt/systemDefinition
Is Defined By http://qudt.org/2.1/schema/qudt

system derived quantity kindop # OPs

URI http://qudt.org/schema/qudt/systemDerivedQuantityKind
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:hasQuantityKindop
Inverse properties qudt:derivedQuantityKindOfSystemop

system dimensionop # OPs

URI http://qudt.org/schema/qudt/systemDimension
Is Defined By http://qudt.org/2.1/schema/qudt

unitop # OPs

URI http://qudt.org/schema/qudt/unit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A reference to the unit of measure of a quantity (variable or constant) of interest.

Inverse properties qudt:unitForop
Range(s) qudt:Unitc

unit forop # OPs

URI http://qudt.org/schema/qudt/unitFor
Is Defined By http://qudt.org/2.1/schema/qudt
Inverse properties qudt:unitop

is unit of systemop # OPs

URI http://qudt.org/schema/qudt/unitOfSystem
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property relates a unit of measure with a system of units that either a) defines the unit or b) allows the unit to be used within the system.

Inverse properties qudt:hasUnitop
Domain(s) qudt:Unitc
Range(s) qudt:SystemOfUnitsc

valueop # OPs

URI http://qudt.org/schema/qudt/value
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A property to relate an observable thing with a value that can be of any simple XSD type

value for quantityop # OPs

URI http://qudt.org/schema/qudt/valueQuantity
Is Defined By http://qudt.org/2.1/schema/qudt
Inverse properties qudt:quantityValueop

superseded byop # OPs

URI http://voag.linkedmodel.org/schema/voag#supersededBy
Is Defined By http://voag.linkedmodel.org/schema/voag

Functional Properties

conversion multiplierfp # FPs

URI http://qudt.org/schema/qudt/conversionMultiplier
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:decimalc

conversion offsetfp # FPs

URI http://qudt.org/schema/qudt/conversionOffset
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:decimalc

currency exponentfp # FPs

URI http://qudt.org/schema/qudt/currencyExponent
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The currency exponent indicates the number of decimal places between a major currency unit and its minor currency unit. For example, the US dollar is the major currency unit of the United States, and the US cent is the minor currency unit. Since one cent is 1/100 of a dollar, the US dollar has a currency exponent of 2. However, the Japanese Yen has no minor currency units, so the yen has a currency exponent of 0.

Range(s) xsd:integerc

prefix multiplierfp # FPs

URI http://qudt.org/schema/qudt/prefixMultiplier
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:doublec

vector magnitudefp # FPs

URI http://qudt.org/schema/qudt/vectorMagnitude
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:floatc

Datatype Properties

abbreviationdp # DPs

URI http://qudt.org/schema/qudt/abbreviation
Is Defined By http://qudt.org/2.1/schema/qudt
Description

An abbreviation for a unit is a short ASCII string that is used in place of the full name for the unit in contexts where non-ASCII characters would be problematic, or where using the abbreviation will enhance readability. When a power of abase unit needs to be expressed, such as squares this can be done using abbreviations rather than symbols. For example, sq ft means square foot, and cu ft means cubic foot.

Range(s) xsd:stringc

acronymdp # DPs

URI http://qudt.org/schema/qudt/acronym
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

base CGS unit dimensionsdp # DPs

URI http://qudt.org/schema/qudt/baseCGSUnitDimensions
Is Defined By http://qudt.org/2.1/schema/qudt
Description

qudt:baseCGSUnitDimensions is a string datatype property expressing the dimensions of a unit, or quantity, as a vector over the base units in the CGS System.

Super-properties qudt:baseUnitDimensionsdp

base ISO unit dimensionsdp # DPs

URI http://qudt.org/schema/qudt/baseISOUnitDimensions
Is Defined By http://qudt.org/2.1/schema/qudt
Description

qudt:baseISOUnitDimensions is a string datatype property expressing the dimensions of a unit, or quantity, as a vector over the base units in the ISO System.

Super-properties qudt:baseUnitDimensionsdp

base Imperial unit dimensionsdp # DPs

URI http://qudt.org/schema/qudt/baseImperialUnitDimensions
Is Defined By http://qudt.org/2.1/schema/qudt
Description

qudt:baseImperialUnitDimensions is a string datatype property expressing the dimensions of a unit, or quantity, as a vector over the base units in the Imperial System.

Super-properties qudt:baseUnitDimensionsdp

base SI unit dimensionsdp # DPs

URI http://qudt.org/schema/qudt/baseSIUnitDimensions
Is Defined By http://qudt.org/2.1/schema/qudt
Description

qudt:baseSIUnitDimensions is a string datatype property expressing the dimensions of a unit, or quantity, as a vector over the base units. For example, in the SI system (capacitance) has the unit (Farad) and base unit dimensions of (C^2 \cdot s^2 / (kg \cdot m^2)).

Super-properties qudt:baseUnitDimensionsdp

base US Customary unit dimensionsdp # DPs

URI http://qudt.org/schema/qudt/baseUSCustomaryUnitDimensions
Is Defined By http://qudt.org/2.1/schema/qudt
Description

"qudt:baseUSCustomaryUnitDimensions" is a string datatype property expressing the dimensions of a unit, or quantity, as a vector over the base units in the US Customary System.

Super-properties qudt:baseUnitDimensionsdp

base unit dimensionsdp # DPs

URI http://qudt.org/schema/qudt/baseUnitDimensions
Is Defined By http://qudt.org/2.1/schema/qudt
Description

"qudt:baseUnitDimensions" is a string datatype property expressing the dimensions of a unit, or quantity, as a vector over the base units.

bytesdp # DPs

URI http://qudt.org/schema/qudt/bytes
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:integerc

citationdp # DPs

URI http://qudt.org/schema/qudt/citation
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

codedp # DPs

URI http://qudt.org/schema/qudt/code
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A code is a string that uniquely identifies a QUDT concept. The code is constructed from the designator. The use of this property has been deprecated.

Domain(s) qudt:Conceptc

conversion coefficientdp # DPs

URI http://qudt.org/schema/qudt/conversionCoefficient
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:doublec

data structuredp # DPs

URI http://qudt.org/schema/qudt/dataStructure
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

dbpedia matchdp # DPs

URI http://qudt.org/schema/qudt/dbpediaMatch
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:anyURIc

qudt descriptiondp # DPs

URI http://qudt.org/schema/qudt/description
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties dcterms:descriptionap
Range(s) rdf:HTMLc

dimension exponentdp # DPs

URI http://qudt.org/schema/qudt/dimensionExponent
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) dtype:numericUnionc

dimension exponent for amount of substancedp # DPs

URI http://qudt.org/schema/qudt/dimensionExponentForAmountOfSubstance
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:dimensionExponentdp

dimension exponent for electric currentdp # DPs

URI http://qudt.org/schema/qudt/dimensionExponentForElectricCurrent
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:dimensionExponentdp
Range(s) xsd:integerc

dimension exponent for lengthdp # DPs

URI http://qudt.org/schema/qudt/dimensionExponentForLength
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:dimensionExponentdp

dimension exponent for luminous intensitydp # DPs

URI http://qudt.org/schema/qudt/dimensionExponentForLuminousIntensity
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:dimensionExponentdp

dimension exponent for massdp # DPs

URI http://qudt.org/schema/qudt/dimensionExponentForMass
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:dimensionExponentdp

dimension exponent for thermodynamic temperaturedp # DPs

URI http://qudt.org/schema/qudt/dimensionExponentForThermodynamicTemperature
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:dimensionExponentdp

dimension exponent for timedp # DPs

URI http://qudt.org/schema/qudt/dimensionExponentForTime
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:dimensionExponentdp

dimensionless exponentdp # DPs

URI http://qudt.org/schema/qudt/dimensionlessExponent
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:dimensionExponentdp

exact constantdp # DPs

URI http://qudt.org/schema/qudt/exactConstant
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:booleanc

field codedp # DPs

URI http://qudt.org/schema/qudt/fieldCode
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

figure captiondp # DPs

URI http://qudt.org/schema/qudt/figureCaption
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

figure labeldp # DPs

URI http://qudt.org/schema/qudt/figureLabel
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

guidancedp # DPs

URI http://qudt.org/schema/qudt/guidance
Is Defined By http://qudt.org/2.1/schema/qudt
Domain(s) qudt:Conceptc
Range(s) rdf:HTMLc

heightdp # DPs

URI http://qudt.org/schema/qudt/height
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

qudt iddp # DPs

URI http://qudt.org/schema/qudt/id
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The "qudt:id" is an identifier string that uniquely identifies a QUDT concept. The identifier is constructed using a prefix. For example, units are coded using the pattern: "UCCCENNNN", where "CCC" is a numeric code or a category and "NNNN" is a digit string for a member element of that category. For scaled units there may be an addition field that has the format "QNN" where "NN" is a digit string representing an exponent power, and "Q" is a qualifier that indicates with the code "P" that the power is a positive decimal exponent, or the code "N" for a negative decimal exponent, or the code "B" for binary positive exponents.

Domain(s) qudt:Conceptc
Range(s) xsd:stringc

iec-61360 codedp # DPs

URI http://qudt.org/schema/qudt/iec61360Code
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

imagedp # DPs

URI http://qudt.org/schema/qudt/image
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:anyURIc

image locationdp # DPs

URI http://qudt.org/schema/qudt/imageLocation
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:anyURIc

informative referencedp # DPs

URI http://qudt.org/schema/qudt/informativeReference
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Provides a way to reference a source that provided useful but non-normative information.

Range(s) xsd:anyURIc

is Delta Quantitydp # DPs

URI http://qudt.org/schema/qudt/isDeltaQuantity
Is Defined By http://qudt.org/2.1/schema/qudt
Description

This property is used to identify a Quantity instance that is a measure of a change, or interval, of some property, rather than a measure of its absolute value. This is important for measurements such as temperature differences where the conversion among units would be calculated differently because of offsets.

Range(s) xsd:booleanc

is metric unitdp # DPs

URI http://qudt.org/schema/qudt/isMetricUnit
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:booleanc

normative reference (ISO)dp # DPs

URI http://qudt.org/schema/qudt/isoNormativeReference
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Provides a way to reference the ISO unit definition.

Super-properties qudt:normativeReferencedp
Range(s) xsd:anyURIc

java namedp # DPs

URI http://qudt.org/schema/qudt/javaName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

Javascript namedp # DPs

URI http://qudt.org/schema/qudt/jsName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

landscapedp # DPs

URI http://qudt.org/schema/qudt/landscape
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:booleanc

latex definitiondp # DPs

URI http://qudt.org/schema/qudt/latexDefinition
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) qudt:LatexStringc

latex symboldp # DPs

URI http://qudt.org/schema/qudt/latexSymbol
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The symbol is a glyph that is used to represent some concept, typically a unit or a quantity, in a compact form. For example, the symbol for an Ohm is (ohm). This contrasts with 'unit:abbreviation', which gives a short alphanumeric abbreviation for the unit, 'ohm' for Ohm.

Range(s) qudt:LatexStringc

literaldp # DPs

URI http://qudt.org/schema/qudt/literal
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties dtype:literal
Range(s) xsd:stringc

lower bounddp # DPs

URI http://qudt.org/schema/qudt/lowerBound
Is Defined By http://qudt.org/2.1/schema/qudt

math definitiondp # DPs

URI http://qudt.org/schema/qudt/mathDefinition
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

mathML definitiondp # DPs

URI http://qudt.org/schema/qudt/mathMLdefinition
Is Defined By http://qudt.org/2.1/schema/qudt
Super-properties qudt:mathDefinitiondp
Range(s) xsd:stringc

matlab namedp # DPs

URI http://qudt.org/schema/qudt/matlabName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

max exclusivedp # DPs

URI http://qudt.org/schema/qudt/maxExclusive
Is Defined By http://qudt.org/2.1/schema/qudt
Description

maxExclusive is the exclusive upper bound of the value space for a datatype with the ordered property. The value of maxExclusive must be in the value space of the base type or be equal to {value} in {base type definition}.

Super-properties qudt:upperBounddp
Range(s) xsd:stringc

max inclusivedp # DPs

URI http://qudt.org/schema/qudt/maxInclusive
Is Defined By http://qudt.org/2.1/schema/qudt
Description

maxInclusive is the inclusive upper bound of the value space for a datatype with the ordered property. The value of maxInclusive must be in the value space of the base type.

Super-properties qudt:upperBounddp

Microsoft SQL Server namedp # DPs

URI http://qudt.org/schema/qudt/microsoftSQLServerName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

min exclusivedp # DPs

URI http://qudt.org/schema/qudt/minExclusive
Is Defined By http://qudt.org/2.1/schema/qudt
Description

minExclusive is the exclusive lower bound of the value space for a datatype with the ordered property. The value of minExclusive must be in the value space of the base type or be equal to {value} in {base type definition}.

Super-properties qudt:lowerBounddp

min inclusivedp # DPs

URI http://qudt.org/schema/qudt/minInclusive
Is Defined By http://qudt.org/2.1/schema/qudt
Description

minInclusive is the inclusive lower bound of the value space for a datatype with the ordered property. The value of minInclusive must be in the value space of the base type.

Super-properties qudt:lowerBounddp

MySQL namedp # DPs

URI http://qudt.org/schema/qudt/mySQLName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

negative delta limitdp # DPs

URI http://qudt.org/schema/qudt/negativeDeltaLimit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A negative change limit between consecutive sample values for a parameter. The Negative Delta may be the encoded value or engineering units value depending on whether or not a Calibrator is defined.

Range(s) xsd:stringc

normative referencedp # DPs

URI http://qudt.org/schema/qudt/normativeReference
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Provides a way to reference information that is an authorative source providing a standard definition

Range(s) xsd:anyURIc

numeric valuedp # DPs

URI http://qudt.org/schema/qudt/numericValue
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) dtype:numericUnionc

ODBC namedp # DPs

URI http://qudt.org/schema/qudt/odbcName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

OLE DB namedp # DPs

URI http://qudt.org/schema/qudt/oleDBName
Is Defined By http://qudt.org/2.1/schema/qudt
Description

OLE DB (Object Linking and Embedding, Database, sometimes written as OLEDB or OLE-DB), an API designed by Microsoft, allows accessing data from a variety of sources in a uniform manner. The API provides a set of interfaces implemented using the Component Object Model (COM); it is otherwise unrelated to OLE.

Range(s) xsd:stringc

online referencedp # DPs

URI http://qudt.org/schema/qudt/onlineReference
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:anyURIc

orderdp # DPs

URI http://qudt.org/schema/qudt/order
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:nonNegativeIntegerc

out of scopedp # DPs

URI http://qudt.org/schema/qudt/outOfScope
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:booleanc

description (plain text)dp # DPs

URI http://qudt.org/schema/qudt/plainTextDescription
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A plain text description is used to provide a description with only simple ASCII characters for cases where LaTeX , HTML or other markup would not be appropriate.

Range(s) xsd:stringc

Positive delta limitdp # DPs

URI http://qudt.org/schema/qudt/positiveDeltaLimit
Is Defined By http://qudt.org/2.1/schema/qudt
Description

A positive change limit between consecutive sample values for a parameter. The Positive Delta may be the encoded value or engineering units value depending on whether or not a Calibrator is defined.

Range(s) xsd:stringc

rationaledp # DPs

URI http://qudt.org/schema/qudt/rationale
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) rdf:HTMLc

relative standard uncertaintydp # DPs

URI http://qudt.org/schema/qudt/relativeStandardUncertainty
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The relative standard uncertainty of a measurement is the (absolute) standard uncertainty divided by the magnitude of the exact value.

Range(s) xsd:doublec

si units expressiondp # DPs

URI http://qudt.org/schema/qudt/siUnitsExpression
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

standard uncertaintydp # DPs

URI http://qudt.org/schema/qudt/standardUncertainty
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The standard uncertainty of a quantity is the estimated standard deviation of the mean taken from a series of measurements.

Range(s) xsd:doublec

symboldp # DPs

URI http://qudt.org/schema/qudt/symbol
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The symbol is a glyph that is used to represent some concept, typically a unit or a quantity, in a compact form. For example, the symbol for an Ohm is (ohm). This contrasts with 'unit:abbreviation', which gives a short alphanumeric abbreviation for the unit, 'ohm' for Ohm.

Super-properties qudt:literaldp
Range(s) xsd:stringc

ucum codedp # DPs

URI http://qudt.org/schema/qudt/ucumCode
Is Defined By http://qudt.org/2.1/schema/qudt
Source https://ucum.org/ucum.html
Description

ucumCode associates a QUDT unit with its UCUM code (case-sensitive).

In SHACL the values are derived from specific ucum properties using 'sh:values'.

Super-properties skos:notation
Range(s) http://qudt.org/schema/qudt/UCUMcs http://qudt.org/schema/qudt/UCUMcs-term

unece common codedp # DPs

URI http://qudt.org/schema/qudt/uneceCommonCode
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

upper bounddp # DPs

URI http://qudt.org/schema/qudt/upperBound
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:anySimpleTypec

urldp # DPs

URI http://qudt.org/schema/qudt/url
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:anyURIc

widthdp # DPs

URI http://qudt.org/schema/qudt/width
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

Annotation Properties

abstractap # APs

URI http://purl.org/dc/terms/abstract
Is Defined By http://purl.org/dc/terms/
Range(s) xsd:stringc

creatorap # APs

URI http://purl.org/dc/terms/creator
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

descriptionap # APs

URI http://purl.org/dc/terms/description

rightsap # APs

URI http://purl.org/dc/terms/rights
Range(s) xsd:stringc

sourceap # APs

URI http://purl.org/dc/terms/source
Is Defined By http://purl.org/dc/terms/
Range(s) xsd:anyURIc

subjectap # APs

URI http://purl.org/dc/terms/subject
Range(s) xsd:stringc

titleap # APs

URI http://purl.org/dc/terms/title
Range(s) xsd:stringc

exampleap # APs

URI http://qudt.org/schema/qudt/example
Is Defined By http://qudt.org/2.1/schema/qudt
Description

The 'qudt:example' property is used to annotate an instance of a class with a reference to a concept that is an example. The type of this property is 'rdf:Property'. This allows both scalar and object ranges.

expressionap # APs

URI http://qudt.org/schema/qudt/expression
Is Defined By http://qudt.org/2.1/schema/qudt
Description

An 'expression' is a finite combination of symbols that are well-formed according to rules that apply to units of measure, quantity kinds and their dimensions.

ucum case-insensitive codeap # APs

URI http://qudt.org/schema/qudt/ucumCaseInsensitiveCode
Is Defined By http://qudt.org/2.1/schema/qudt
Description

ucumCode associates a QUDT unit with a UCUM case-insensitive code.

Super-properties qudt:ucumCodedp

ucum case-sensitive codeap # APs

URI http://qudt.org/schema/qudt/ucumCaseSensitiveCode
Is Defined By http://qudt.org/2.1/schema/qudt
Description

ucumCode associates a QUDT unit with with a UCUM case-sensitive code.

Super-properties qudt:ucumCodedp

Properties

contributorp # Props

URI http://purl.org/dc/terms/contributor
Range(s) xsd:stringc

createdp # Props

URI http://purl.org/dc/terms/created
Range(s) xsd:datec

modifiedp # Props

URI http://purl.org/dc/terms/modified
Range(s) xsd:datec

allowed patternp # Props

URI http://qudt.org/schema/qudt/allowedPattern
Is Defined By http://qudt.org/2.1/schema/qudt

ANSI SQL Namep # Props

URI http://qudt.org/schema/qudt/ansiSQLName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

basisp # Props

URI http://qudt.org/schema/qudt/basis
Is Defined By http://qudt.org/2.1/schema/qudt

bitsp # Props

URI http://qudt.org/schema/qudt/bits
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:integerc

boundedp # Props

URI http://qudt.org/schema/qudt/bounded
Is Defined By http://qudt.org/2.1/schema/qudt

C Language namep # Props

URI http://qudt.org/schema/qudt/cName
Is Defined By http://qudt.org/2.1/schema/qudt
Description

Datatype name in the C programming language

Range(s) xsd:stringc

cardinalityp # Props

URI http://qudt.org/schema/qudt/cardinality
Is Defined By http://qudt.org/2.1/schema/qudt

element typep # Props

URI http://qudt.org/schema/qudt/elementType
Is Defined By http://qudt.org/2.1/schema/qudt

lengthp # Props

URI http://qudt.org/schema/qudt/length
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:integerc

ORACLE SQL namep # Props

URI http://qudt.org/schema/qudt/oracleSQLName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

ordered typep # Props

URI http://qudt.org/schema/qudt/orderedType
Is Defined By http://qudt.org/2.1/schema/qudt

protocol buffers namep # Props

URI http://qudt.org/schema/qudt/protocolBuffersName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

python namep # Props

URI http://qudt.org/schema/qudt/pythonName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

rdfs datatypep # Props

URI http://qudt.org/schema/qudt/rdfsDatatype
Is Defined By http://qudt.org/2.1/schema/qudt

Vusal Basic namep # Props

URI http://qudt.org/schema/qudt/vbName
Is Defined By http://qudt.org/2.1/schema/qudt
Range(s) xsd:stringc

was derived fromp # Props

URI http://www.w3.org/ns/prov#wasDerivedFrom
Is Defined By http://www.w3.org/ns/prov
Range(s) qudt:Conceptc

Namespaces

default (:)
http://qudt.org/2.1/schema/qudt
dc
http://purl.org/dc/elements/1.1/
dcterms
http://purl.org/dc/terms/
dtype
http://www.linkedmodel.org/schema/dtype#
owl
http://www.w3.org/2002/07/owl#
prov
http://www.w3.org/ns/prov#
quantitykind
http://qudt.org/vocab/quantitykind/
qudt
http://qudt.org/schema/qudt/
qudt.type
http://qudt.org/vocab/type/
rdf
http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs
http://www.w3.org/2000/01/rdf-schema#
sdo
https://schema.org/
skos
http://www.w3.org/2004/02/skos/core#
unit
http://qudt.org/vocab/unit/
vaem
http://www.linkedmodel.org/schema/vaem#
voag
http://voag.linkedmodel.org/schema/voag#
xsd
http://www.w3.org/2001/XMLSchema#

Legend

cClasses
opObject Properties
fpFunctional Properties
dpData Properties
dpAnnotation Properties
pProperties
niNamed Individuals